The understanding of isolated quantum systems in extreme conditions requires the resolution of outstanding open questions, which are relevant for a wide range of topical applications from particle and nuclear physics to atomic and condensed matter physics. Many such systems exhibit characteristic common properties despite dramatic differences in key parameters such as temperature, density, field strength and others.

The existence of universal regimes, where even quantitative agreements between seemingly disparate physical systems can be observed, drives a remarkable convergence of research activities across traditional lines of specialisation. In turn, the identification and investigation of non-universal properties plays a vital role for an improved under- standing of fundamental differences between the systems.

A major focus of the planned Collaborative Research Centre 1225 concerns research on strongly interacting systems such as those experimentally realised in unitary quantum gases, strongly coupled quark-gluon matter and highly charged hydrogenlike ions. More precisely, we investigate extreme conditions, where the dimensionless combination of the interaction strength, fields expectation values and characteristic energy scale or density of states becomes of order one. New universality classes have been recently discovered in these regimes, which occur far from equilibrium, providing exciting new links between different physical systems ranging from hot plasmas to cold gases.

An important strength of this proposal concerns the investigation of transient phenomena as well as equilibrium properties from a common perspective. This allows us to address some of the most pressing questions concerning the thermalisation process, the interplay of strong fields with the vacuum and matter, and the phase structure of systems in extreme conditions. Our focus lies on isolated quantum systems, where the dynamics is governed by unitary time evolution described by quantum field theory, thus giving access to relevant fundamental physics problems.

Experimentally, these questions will be investigated with the help of ultrarelativistic heavy-ion collisions, precision spectroscopy with highly charged ions, and ultracold quantum gases. Together they allow us to probe more than twenty orders of magnitude in energy scale. While the former explore the theory of the strong interaction (QCD) and quantum electrodynamics (QED), ultracold quantum gases are used to engineer generic model systems to address complex many-body problems.

Our overall goal is the classification and quantitative understanding of universal aspects of isolated quantum systems in extreme conditions, as well as gaining insight into the question of how particular microscopic systems deviate from universality. Focussing on isolated systems offers particularly clean experimental and theoretical settings. Extreme conditions enhance the loss of memory of microscopic properties from which universality originates. The scope of this project requires a concerted research effort across different fields of specialisation for which Heidelberg provides an ideal environment.

May 2017

Press release: Study on Quantum-Simulators

In cooperation with physicists at Heidelberg University, scientists at the Technical University of Vienna have developed a new type of measurements of quantum many-body systems. In this work genuine quantum field theories are considered, which describe particles not as distinct entities but instead as fields, which permeate the whole of the universe. At the Vienna Center for Quantum Science and Technology it was shown how such theories in particular may be probed, even though they are in general very difficult to access in experiment. To this end researchers created a quantum system made up of thousands of ultracold atoms. This atom-cloud becomes a Quantum-Simulator, suspended in a magnetic trap on an atom chip, with which fundamental quantum processes may be simulated and hence investigated. Their most recent research results have been published in the scientific journal "Nature".

Link to the manuscript

May 2017

Max Dresden Prize for Aleksas Mazeliauskas (outstanding theoretical thesis)

Our most recent new entrant to project B3 and C5, postdoc Aleksas Mazeliauskas, received the Max Dresden prize for his PhD dissertation on "ground-breaking work on the physics of fluctuations in high-energy nucleus-nucleus collisions". The award, including a cash prize and a book, was announced on May 2nd at the Award Colloqium of the Department of Physics and Astronomy of Stony Brook University, USA. Aleksas was advised by prof. Derek Teaney. (Max Dresden Prize Webpage)

Mar. 2017

Otto-Haxel-Award for Oscar Garcia-Montero (best master's thesis)

Oscar Garcia-Montero received the Otto-Haxel-Award for his Master thesis, which he completed in the research group of Jürgen Berges as part of SFB project A1. The award, including a cash prize, was presented on March 4th at the graduation ceremony of the department of physics and astronomy of Heidelberg University. At this occasion the award recipient presented his Master thesis work in a presentation titled "How protons shatter the color glass".

Sep. 2017

Mini-workshop on Quarkonium Real-time Dynamics

With research on quarkonium in-medium real-time evolution having seen an unprecedented intensity in recent months, this ISOQUANT mini-workshop aims at bringing together practitioners from diverse but interrelated fields, such as open-quantum systems, lattice QCD, effective field theories and heavy-ion collisions experiments to exchange ideas and identify outstanding questions as basis for further study.

Feb. 2017

ISOQUANT Kick-off workshop

This inaugural workshop of SFB1225 with international participation will be held in Obergurgl and surveys the current status of and the ongoing research within the collaborative research center.

Registration is now closed, please address inquiries to Tina Kuka

Dec. 2016

632. WE-Heraeus-Seminar:
Gauge Field Dynamics with Ultracold Gas Systems

This workshop aims to explore the physics of gauge theories with atomic physics setups by bringing together experts in the field of theoretical and experimental physics. It will build on intensive discussions in an informal atmosphere and thus ample time for discussions is foreseen together with topical talks setting the stage. The seminar is generously funded by the Wilhelm and Else Heraeus Foundation and will be held from December 12th to 15th, 2016 at the Physikzentrum Bad Honnef near Bonn and Cologne in Germany.

The topics include general aspects such as:
  • Ultracold atomic systems – possibilities and limitations
  • Gauge field dynamics – from general to the specifics
  • Explicit proposals for experimental realizations in the context of gauge field dynamics
The seminar will bring together leading experts in the field of atomic physics, quantum optics, condensed matter, and high energy theory (see invited speakers).

05. Jul
INF 227, SR 2.402 16:15h

Quantum atom optics: entanglement in many particle systems and the ocean

(Ring Lecture: Modern Quantum Physics)

Speaker: Markus Oberthaler

21. Jun
INF 16:15h

Quantum simulation with cold atoms

(Ring Lecture: Modern Quantum Physics)

Speaker: Martin Gärttner

07. Jun
INF 227, SR 2.402 16:15h

Physics with Penning traps towards the precision limit-determination of fundamental constants

(Ring Lecture: Modern Quantum Physics)

Speaker: Klaus Blaum

31. May
KIP, 2.402 16:15h

Entanglement in cold quantum gases: challenges and possibilities for novel quantum technologies

(Ring Lecture: Modern Quantum Physics)

Speaker: Philipp Hauke

Steering Board

Name Institution Web Email
Prof. Dr. Jürgen Berges ITP Heidelberg Homepage Speaker
Prof. Dr. Johanna Stachel PI Heidelberg Homepage Vice Speaker
Prof. Dr. Klaus Blaum MPIK Heidelberg Homepage
Prof. Dr. Markus Oberthaler KIP Heidelberg Homepage
Tina Kuka ITP Heidelberg Homepage Coordinator
Torsten Zache KIP Heidelberg Homepage Student Representative YRC

Principal Investigators / Associate Members

Name Institution Web Email Project Area
Prof. Dr. Jürgen Berges ITP Heidelberg Homepage A, B
Prof. Dr. Klaus Blaum MPIK Heidelberg Homepage B
Prof. Dr. Peter Braun-Munzinger PI Heidelberg Homepage C
Priv.-Doz. Dr. José R. Crespo López-Urrutia MPIK Heidelberg Homepage B
Priv.-Doz. Dr. Tilman Enss ITP Heidelberg Homepage C
Priv.-Doz. Dr. Jörg Evers MPIK Heidelberg Homepage B
Dr. Stefan Floerchinger ITP Heidelberg Homepage C
Prof. Dr. Thomas Gasenzer KIP Heidelberg Homepage A
Dr. Philipp Hauke KIP Heidelberg Homepage B
Jun.-Prof. Dr. Fred Jendrzejewski KIP Heidelberg Homepage B
Prof. Dr. Selim Jochim PI Heidelberg Homepage C
Hon.-Prof. Dr. Christoph H. Keitel MPIK Heidelberg Homepage B
Priv.-Doz. Dr. Silvia Masciocchi PI Heidelberg Homepage A, C
Prof. Dr. Markus Oberthaler KIP Heidelberg Homepage A, B
Priv.-Doz. Dr. Adriana Pálffy-Buß MPIK Heidelberg Homepage B
Prof. Dr. Jan Pawlowski ITP Heidelberg Homepage A, B, C
Prof. Dr. Klaus Reygers PI Heidelberg Homepage A
Dr. Alexander Rothkopf ITP Heidelberg Homepage C
Prof. Dr. Manfred Salmhofer ITP Heidelberg Homepage C
Dr. Björn Schenke BNL Homepage A
Prof. Dr. Jörg Schmiedmayer VCQ TU-Wien Homepage A
Prof. Dr. Johanna Stachel PI Heidelberg Homepage A, C
Prof. Dr. Raju Venugopalan BNL Homepage A
Prof. Dr. Matthias Weidemüller PI Heidelberg Homepage A, C
Prof. Dr. Christof Wetterich ITP Heidelberg Homepage B, C
Dr. Shannon Whitlock PI Heidelberg Homepage A
Project Title Research Area Principal Investigators
Area A: Far from equilibrium dynamics and thermalisation in isolated quantum systems
1 Initial state and thermalisation dynamics in heavy-ion collisions QCD, heavy-ion collisions Berges (ITP), Reygers (PI), Stachel (PI)
2 From QCD transport to particle yields QCD, heavy-ion collisions Masciocchi (PI), Pawlowski (ITP), Stachel (PI)
3 Nonequilibrium dynamics and relaxation in many-body quantum systems Ultracold atoms Schmiedmayer (TU Wien)
4 Probing quantum phase transitions with quenches: Universality far from equilibrium Ultracold atoms Gasenzer (KIP), Oberthaler (KIP)
5 Dynamics of quantum spin systems with long-range interactions Ultracold atoms Weidemüller (PI), Whitlock (PI)
Area B: Quantum systems with strong fields
1 Precision physics in strong-field QED and limits on the time variation of fundamental constants QED, cosmology Blaum (MPIK), Crespo (MPIK), Wetterich (ITP)
2 Strong-field physics with nuclei and highly charged ions QED, nuclear physics Evers (MPIK), Keitel (MPIK), Pálffy-Buß (MPIK)
3 Quantum dynamics of strong gauge fields and condensates QCD, QED, ultracold atoms Berges (ITP), Pawlowski (ITP)
4 Cold atom gauge theories Particle physics, ultracold atoms Berges (ITP), Jendrzejewski (KIP), Oberthaler (KIP)
Area C: Phase structure, large fluctuations and quantum critical phenomena
1 Strongly correlated fermions Ultracold atoms, QCD Jochim (PI), Pawlowski (ITP), Wetterich (ITP)
2 From few to many: ultracold atoms in reduced dimensions Ultracold atoms, nuclear physics Enss (ITP), Jochim (PI)
3 Fermi-Bose mixtures with large mass ratio Ultracold atoms, condensed matter Enss (ITP), Salmhofer (ITP), Weidemüller (PI)
4 Probing the QCD phase structure with heavy quarks QCD, heavy-ion collisions Braun-Munzinger (PI), Rothkopf (ITP), Stachel (PI)
5 Flow and fluctuations in relativistic heavy ion collisions QCD, heavy-ion collisions Floerchinger (ITP), Masciocchi (PI)

Angaben gemäß § 5 TMG:

Philosophenweg 16/12
Institut für Theoretische Physik
D-69120 Heidelberg

Vertreten durch:

Prof. Dr. Jürgen Berges: Sprecher des Sonderforschungsbereichs

Dr. Alexander Rothkopf: Scientific Manager des Sonderforschungsbereichs


Telefon: +49-6221-54 9346
Telefax: +49-6221-54 9333

Verantwortlich für den Inhalt nach § 55 Abs. 2 RStV:

Prof. Dr. Jürgen Berges und
Dr. Alexander Rothkopf
Institut für Theoretische Physik
Philosophenweg 16/12
D-69121 Heidelberg

Haftungsausschluss (Disclaimer)

Haftung für Inhalte

Als Diensteanbieter sind wir gemäß § 7 Abs.1 TMG für eigene Inhalte auf diesen Seiten nach den allgemeinen Gesetzen verantwortlich. Nach §§ 8 bis 10 TMG sind wir als Diensteanbieter jedoch nicht verpflichtet, übermittelte oder gespeicherte fremde Informationen zu überwachen oder nach Umständen zu forschen, die auf eine rechtswidrige Tätigkeit hinweisen. Verpflichtungen zur Entfernung oder Sperrung der Nutzung von Informationen nach den allgemeinen Gesetzen bleiben hiervon unberührt. Eine diesbezügliche Haftung ist jedoch erst ab dem Zeitpunkt der Kenntnis einer konkreten Rechtsverletzung möglich. Bei Bekanntwerden von entsprechenden Rechtsverletzungen werden wir diese Inhalte umgehend entfernen.

Haftung für Links

Unser Angebot enthält Links zu externen Webseiten Dritter, auf deren Inhalte wir keinen Einfluss haben. Deshalb können wir für diese fremden Inhalte auch keine Gewähr übernehmen. Für die Inhalte der verlinkten Seiten ist stets der jeweilige Anbieter oder Betreiber der Seiten verantwortlich. Die verlinkten Seiten wurden zum Zeitpunkt der Verlinkung auf mögliche Rechtsverstöße überprüft. Rechtswidrige Inhalte waren zum Zeitpunkt der Verlinkung nicht erkennbar. Eine permanente inhaltliche Kontrolle der verlinkten Seiten ist jedoch ohne konkrete Anhaltspunkte einer Rechtsverletzung nicht zumutbar. Bei Bekanntwerden von Rechtsverletzungen werden wir derartige Links umgehend entfernen.


Die durch die Seitenbetreiber erstellten Inhalte und Werke auf diesen Seiten unterliegen dem deutschen Urheberrecht. Die Vervielfältigung, Bearbeitung, Verbreitung und jede Art der Verwertung außerhalb der Grenzen des Urheberrechtes bedürfen der schriftlichen Zustimmung des jeweiligen Autors bzw. Erstellers. Downloads und Kopien dieser Seite sind nur für den privaten, nicht kommerziellen Gebrauch gestattet. Soweit die Inhalte auf dieser Seite nicht vom Betreiber erstellt wurden, werden die Urheberrechte Dritter beachtet. Insbesondere werden Inhalte Dritter als solche gekennzeichnet. Sollten Sie trotzdem auf eine Urheberrechtsverletzung aufmerksam werden, bitten wir um einen entsprechenden Hinweis. Bei Bekanntwerden von Rechtsverletzungen werden wir derartige Inhalte umgehend entfernen.